Securing Threaded Connections
Securing Threaded Connections

Ever since it was first invented, the threaded fastener has proven itself an irreplaceable part of the world of fastening technology. Today, threaded fasteners continue as before to be one of the most important types of releasable fastener in the fields of construction, assembly and repair. Within this category, the range of different types of fastener and the uses to which they can be put is continuously increasing. The problem of retaining these fasteners has become a hugely complex subject, which is difficult to fully comprehend. This latest issue of Böllhoff Bulletin will give you an introduction to the technical principles that underpin the subject of how to retain fasteners and provides an overview of the major types of locking system available on the market today. The following information is provided with the aim of helping you to always choose the best fastener for the job, based on technical and economic considerations. We hope we achieve our aim. Should you require any further advice on finding the right solution for your individual requirements, our applications technology engineers are always on hand to help.

The most important relationships that determine whether or not a threaded connection is reliable are illustrated in the diagram.

From Data Sheet 302*: A well designed threaded connection, tightened under controlled conditions, should not usually require additional retention measures.
In practice, it is not always possible to achieve a sufficiently secure threaded connection through good design alone. A range of fastener locking methods is available to prevent threaded connections from loosening or falling apart in such cases. It must however be noted that, even today, spring washers and other accessory elements are still used in their millions, despite the fact that these supposed retainers are completely ineffective in high-strength threaded connections, and the corresponding standards have long since been withdrawn by the German Institute for Standardization (DIN). It has long been known that a properly implemented threaded connection can generate considerably higher clamping forces than could be achieved using a spring washer or tab washer.

Withdrawn standards

To date, the following standards relating to retainers have been withdrawn by DIN (Deutsches Institut für Normung e. V.):

- Spring washers (DIN 127, DIN 128 and DIN 6905)
- Curved spring washers (DIN 137 and DIN 6904)
- Toothed lock washers (DIN 6797)
- Serrated lock washers (DIN 6798 and DIN 6908)
- Tab washers (DIN 93, DIN 432 and DIN 463)
- Safety cups (DIN 526)
- Self-locking nuts (DIN 7967)
- Hexagon Thin Slotted and Castle Nuts (DIN 937)

When used with high-strength threaded fasteners, the retainers defined by these standards neither provide a locking effect, nor are they suitable as a precaution against setting.

Comparison of loosening characteristics of various fastener retention methods under dynamic lateral load
Relationships between force and deformation in preloaded threaded connections

Threaded connections should be designed in such a way that there is no way in which the maximum possible combined loads could lead to the yield point of the mated components being exceeded*. The tightening torque must be selected so that the preload force applied results in a purely frictional connection between the components. **Guideline value:** Preload force should be at least 75% of the yield strength of the threaded fastener. With a clamping length ratio of \(L_k/D_{Nom} > 5 \), a low number of contact surfaces and sufficient preload force, metallic components do not require additional retention measures, provided that no increased dynamic loads occur, particularly perpendicular to the axis of the fastener.

* Exception: Overelastic tightening – this does however require a special tightening procedure.

Preload diagram

Applying a tightening torque to create a connection indirectly causes a preload force to act on the fastener, which in turn leads to lengthening of the fastener and a contraction of the components. Any forces that occur in use are distributed according the elasticity of the mated parts. Under tensile stress, the load on the fastener is only reduced slightly, however the remaining clamping force is decreased significantly. **Important:** Any compressible spring components used in conjunction with the fastener will affect the load ratios.
Effect of preload force and thread pitch

The friction angle, \(\mu \), describes the ratio of the normal force, \(F_N \), to the frictional force, \(F_r \), that it generates. Taken in the context of a threaded connection, the normal force and the preload force can be considered equal as a first approximation. Provided that the pitch angle, \(\phi \), of the thread is smaller than the friction angle, \(\mu \), the thread will be self-locking.

Static and dynamic load cases

Forces acting on the system that give rise to deformation may cause a displacement of the component. When dynamic loads (vibrations) are present, it is possible for effects to occur that cause the threaded connection to work loose, despite the fact that permissible values were not exceeded, e.g. due to parts oscillating in opposition to each other. This effect is referred to as self-loosening. In such cases, the dynamic lateral forces, \(F_Q \), acting on the connection are of sufficient magnitude to cause the joined parts to move against each other in opposite directions (relative motion between the contact surfaces of the clamped parts).
How self-loosening occurs

It is not uncommon for threaded connections to fail due to self-loosening when subjected to dynamic loads, particularly where the forces act perpendicularly to the axis of the connection. This can result in defects and damage caused by the partial or complete loss of preload force in the form of fatigue cracks or unscrewing of connections.

Connections unscrew because of the internal unscrewing torque within the connection, which occurs when forces act to overcome the frictional connection between the head of the fastener and the part and/or between the fastener and the internal thread. Connections formed using a clearance through-hole (nut and bolt) are particularly at risk of this type of failure as there is more potential for the fastener to work loose.

Causes of self-loosening of a threaded connection

- **Loss of preload force as a result of self-loosening**
 - **Loosening**
 - Creep = Time-dependent plastification due to exceeding the elastic limit of the material.
 - Setting due to smoothing of surface finish at the contact surfaces
 - **Unscrewing**
 - Total due to loss of self-locking effect
 - Partial due to reduction in self-locking
 - Bolt, nut, clamped parts
 - Thread, head and nut contact surfaces, component contact surfaces
 - External unscrewing torque
 - Relative motion of the contact surfaces
 - Relaxation of the internally threaded part under axial load

Guideline

Connections are usually sufficiently secure simply as a result of the combination of frictional resistance and the clamping force between the nut/fastener and the clamped parts. Provided that the clamping length is appropriate (guideline value > 5d), threaded fasteners do not generally require additional retention measures, even when subject to dynamic load. If loads occur that create a situation where design measures alone are insufficient to maintain a connection, then additional retainers must be used.

* Data Sheet 302: "Sicherungen für Schraubverbindungen", O. Strelow
Precautions against self-loosening

Spring retainer

These retainers compensate for the effects of creep, setting and the elasticity of the parts. They generally act in a similar way to a return spring.

Caution: Many compressible components still in common use are ineffective, e.g. spring washers.

Anti-unscrewing

Retainers for preventing relative movement between fastening elements. (Locking teeth, locking ribs, micro-encapsulated adhesives).

Specification: Min. 80% of preload force must be maintained.

Anti-loss

Retainers for preventing connections from completely falling apart. The principle underlying these retainers is usually an increase in friction/clamping force in the thread or underside of the head. Less than 80% of preload force is maintained.

Vibration test rig in Böllhoff laboratory
Overview of retainers in tabular form

<table>
<thead>
<tr>
<th>Type</th>
<th>Operating principle</th>
<th>Designation</th>
<th>Standard</th>
<th>Retention effect</th>
<th>Ease of integration into existing design</th>
<th>Thermal stability</th>
<th>Multiple use</th>
<th>Corrosion protection</th>
<th>Additional benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause of loosening: loosening due to setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring retainer</td>
<td>Compressible spring components</td>
<td>Disc springs</td>
<td>DIN 2093</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conical spring washer</td>
<td>DIN 6796 and B 53072</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Screw and washer assemblies</td>
<td>DIN 6900</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nuts with captive washers</td>
<td>B 53010</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lock washers</td>
<td>B 53070</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Reduction of surface pressure</td>
<td>Hexagon bolts with flange</td>
<td>DIN EN 1665</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Screw and washer assemblies</td>
<td>DIN EN ISO 10644</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flanged nuts</td>
<td>DIN 6923</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washers</td>
<td>e.g. ISO 7089</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cause of loosening: unscrewing due to forces too great for anti-loss retainer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-loss</td>
<td>Positive locking</td>
<td>hex. castle nut</td>
<td>e.g. DIN 935</td>
<td>0</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fasteneners with split pin hole</td>
<td>DIN 962</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Prevailing torque components</td>
<td>Prevailing torque type all-metal nuts</td>
<td>e.g. DIN 6927</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-locking hex flange nuts: non metallic insert</td>
<td>e.g. DIN 6926</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plastic coating in thread</td>
<td>B 53081</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Type</td>
<td>Operating principle</td>
<td>Designation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause of loosening: unscrewing due to forces too great for anti-loosening components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-loss</td>
<td>Other method</td>
<td>Thread forming screw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-locking thread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HELICOIL® screwlock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lock nut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine pitch thread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-unscrewing</td>
<td>Locking components</td>
<td>RIPP LOCK® lock washers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ribbed fastener/nut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serrated washer head screws/nuts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Profiled washer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adhesive components</td>
<td>Microencapsulated adhesive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid adhesive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wedge locking method</td>
<td>NORD-LOCK® Paired wedge-locking washers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>Retention effect</td>
<td>Ease of integration into existing design</td>
<td>Thermal stability</td>
<td>Contraction protection</td>
<td>Additional benefit</td>
<td>Clamping efficiency of thread</td>
<td>Lubrication</td>
<td>Effort required to install</td>
<td>Hardness of counter surface</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>--</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>e.g. DIN 7500</td>
<td>o</td>
<td>+</td>
<td>o</td>
<td>o</td>
<td>Streamlined</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>No standard</td>
<td>o</td>
<td>+</td>
<td>o</td>
<td>o</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>o</td>
</tr>
<tr>
<td>B 62000</td>
<td>o</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Increases strength</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>No standard</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>DIN 13 Part 2 et seq.</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>B 53065</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B 158</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B 53085, B 151</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>e.g. B 53072</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DIN 267 Part 27</td>
<td>+</td>
<td>+</td>
<td>o</td>
<td>-</td>
<td>Sealing</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>No standard</td>
<td>o</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Sealing</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>B 53074</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
1. Mechanical thread retention methods

- **Prevailing torque**
 Mostly internally threaded components, e.g. prevailing torque type nuts (DIN 6927, DIN 6926, DIN 985), Fujilok nut (B 53030), Vargal (B 53040), etc.

- **Locking**
 Serrated washer head fasteners (B 53085, B 151 and B 158), serrated washer head nuts (B 196, B 193 and B 53012), lock washers (e.g. RIPP LOCK®).

- **Sprung**
 e.g. disc springs (DIN 2093), conical spring washers (DIN 6796 and B 53072), screw and washer assemblies (DIN 6900-5), nuts with captive washers (B 53010), etc.

- **Lock nut**
 Any type of nut that is clamped by an additional internally-threaded component – these are not true retainers.

- **Positive locking**
 Hexagon slotted nuts and castle nuts (DIN 935 and DIN 979), fasteners with split pin hole (DIN 962).

- **Thread forming**
 Thread retention as added benefit

There are also numerous types of retainer that combine two or more different types of mechanical retention (e.g. RIPP LOCK® lock washers, NORD-LOCK® washers).
1.1 Retainers with locking teeth/profiled surfaces

This retention method works using embossed teeth, which are usually asymmetrical, arranged in such a way that the steeper flanks are aligned towards the direction of unscrewing. These formed elements are embedded into the component when the fastener is tightened and produce a positive locking effect that must be overcome before loosening can occur. The functionality is highly dependent on the characteristics of the surfaces and the strength of the parts that provide the prevailing torque. There are two major subdivisions within this category:

Fasteners and nuts with teeth/profiling underneath the head

- e.g. B 53085 Hexagonal self-locking fasteners
- B 53012 Self-locking nuts with flange
- B 151 and B 196 ZAHN self-locking fasteners
- B 158 and B 193 RIPP self-locking fasteners

Toothed, profiled washers

- e.g. B 53065 RIPP LOCK® lock washers
- B 53070 lock washers (Schnorr washers)
- B 53072 Spring-lock washers (contact washers)

1.2.1 RIPP LOCK® lock washers

RIPP LOCK® lock washers feature radial ribs on both sides. During fitting, the radial ribs are pressed into the mating face and the underside of the fastener head, forming a positive locking connection.

- Reliable and economical fastener retention for universal use
- Also suitable for use under extreme vibration and high dynamic loads
- Simple fitting and removal, multiple reuse

1.2.2 NORD-LOCK® lock washers

The NORD-LOCK® fastener locking system makes use of a difference in angle between the cam faces and the thread pitch to ensure effective locking of threaded connections in critical applications. This offers the following benefits:

- Maximum security for locking of threaded connections up to property class 12.9
- Prevents unscrewing under oscillatory and dynamic load
- Effective even with low preload forces
1.3.1 Prevailing torque type nuts, DIN EN ISO 2320

Self-locking nuts as defined by this standard incorporate an integral resistance piece that ensures the externally threaded part cannot move freely within the nut and that provides resistance against turning (prevailing torque) independently of the clamping or compressive forces. The design of the resistance insert is usually at the discretion of the manufacturer.

Different types:
- With non-metallic insert, ISO 10511, ISO 7040
- With metallic insert, e.g. B 53030 “Fujilok”, B 53040 “Vargal”
- All-metal type, e.g. ISO 7042
- Triple compressed, based on DIN 934, e.g. B 53001, B 53002

1.3.2 HEICOIL® lock nuts

HEICOIL® screwlock lock nuts combine the benefits of a high-strength nut with a HEICOIL® screwlock thread insert. In a HEICOIL® screwlock lock nut, the retaining effect is generated by the elastic action of the coiled wire of the HEICOIL® screwlock. These high-quality nuts provide enormous structural benefits.

Benefits:
- Heat resistant up to 600°C and above
- Anti-loss action even with frequent, repeated fastening
- Improved load distribution in thread for threaded connections subject to high dynamic loading
- Low, constant thread friction ensures high, uniform preload force
- Application-specific coating on HEICOIL® does not depend on coating used on nut
1.4 Self-tapping fasteners as an alternative to pre-tapped threads

Metric ISO standard thread as per DIN 13 in pre-cut internal thread

Where a pre-cut internal thread is used, the flank clearance means that the fastener only makes contact with the internal thread on the load flank once tightened. This means that frictional properties of this type of connection offer less resistance to self-loosening than would be the case with a self-tapped connection, which ideally should have zero flank clearance. A proportion of the tightening torque applied when forming a self-tapped connection is spent in forming the thread. The optimum torque must therefore be established by means of testing.

1.5 Fasteners with mechanical self-locking thread

Threaded fasteners described as having an integral “thread brake” are self-locking fasteners with special threads. The fasteners are simply screwed into an existing metric ISO thread (tolerance zone 6H). This category includes, for example, fasteners that have small additional flanks at 30° rolled onto the regular 60° flanks of thread, which protrude beyond the nominal diameter of the external thread. These 30° tips are forced into the mating thread as the fastener is tightened, thereby creating a self-locking effect that helps the fastener remain firmly seated even when subjected to oscillation and vibration. The deformation of the internal thread is largely confined to the elastic region. This ensures that the locking effect is maintained for up to five repeated fastenings.
2. Chemical fastener retention

Chemical thread retention methods
(adhesive - locking - sealing)

Chemical thread retention methods play a very important role in providing secure fastenings in the modern world. These products are offered either as liquid adhesive coatings (anaerobically hardening) or as pre-coatings. The latter has the advantage that the coating no longer has to be applied manually during assembly, but rather it can be applied using a reproducible process before the fastener is supplied. This is also possible with bulk quantities.

2.1 Liquid anaerobic adhesives

The liquid adhesive is applied immediately before fitting the fastener. This is commonly done either by the fitter applying adhesive from a plastic bottle or, in standard production, by using an automatic metering and application system. The adhesive is characterised by having the property that it hardens on contact with metal and in the absence of air (anaerobically).

2.2 Description of pre-coating systems

Standard DIN 267 predefines the coating zone as 1.5 d measured from the thread end.

The first 2–3 turns of the thread should be kept free of coating material in order to make it easier to screw the fastener in. Also contained in the standard is a comparison of tightening torques with breakaway torques/clamping torques. This ensures that testing procedures are systematic.

- **a) DIN 267 Part 27, adhesive coating**

 Microencapsulated adhesive: the pressure and/or shear forces produced as the fastener is tightened cause the micro-capsules to rupture. This releases the adhesive and hardener contained within the capsules. A chemical reaction (polymerisation) then occurs that hardens the adhesive (adhesive bonding), thereby producing the desired locking effect. Bonding the internally and externally threaded components in this manner is a reliable way to prevent self-unscrewing of the threaded connection. Apart from any loss of force due to the effects of setting, the connection retains the full preload force applied during fitting (unscrewing prevention). Depending on the product, the fitting process should be completed within five minutes (hardening). The time taken for the adhesive to become fully effective varies between 1 and 24 hours according to the type used.

- **b) DIN 267 Part 28, locking coating**

 Locking thread retention agent: this technique involves applying a polyamide to a section of the thread. Chemical thread retention methods play a very important role in providing secure fastenings in the modern world. These products are offered either as liquid adhesive coatings (anaerobically hardening) or as pre-coatings. The latter has the advantage that the coating no longer has to be applied manually during assembly, but rather it can be applied using a reproducible process before the fastener is supplied. This is also possible with bulk quantities.

Reason for thread precoating = built-in retention with existing components

Fasteners according to customer specifications
The axial clearance between the external and internal threads is filled in by the coating, which results in high surface pressure (positive locking) between the coated thread and the flanks of the uncoated mating thread. This creates the desired locking effect. Loss-prevention methods can not prevent partial unscrewing, but are certainly able to prevent the threaded connection falling apart completely. Multiple use is possible here, however the clamping forces are reduced with each fastening.

Benefits of chemical thread locking applied as precoating as per DIN 267 Parts 27/28:

- Impossible to forget to fit the retainer
- Economical – time-consuming fitting of additional mechanical fasteners not required
- Good reliability compared to many other so-called “retainers” such as circlips, washers and wire retainers
- Does not damage surface of component
- No adhesive metering problems
- Activated at exactly the right time during tightening
- Possible to match fastener properties to the requirements of a specific application

Chemical thread coatings can also provide a sealing function. Where this property is used, attention should be paid to ensuring that the coating is applied continuously around the fastener or nut and that any additional requirements have been defined.

<table>
<thead>
<tr>
<th>Material</th>
<th>Effect</th>
<th>Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyamide, spot</td>
<td>Locking</td>
<td>1</td>
</tr>
<tr>
<td>Polyamide, all round</td>
<td>Locking, sealing</td>
<td>2</td>
</tr>
<tr>
<td>Polyamide, spot, heat res.</td>
<td>Locking (heat resistant)</td>
<td>3 Brown</td>
</tr>
<tr>
<td>Polyamide, all round, heat res.</td>
<td>Locking, sealing (heat resistant)</td>
<td>4 Brown</td>
</tr>
<tr>
<td>Precote 30</td>
<td>Med. strength adhesive, thread μ 0.10–0.15</td>
<td>5 Yellow</td>
</tr>
<tr>
<td>Precote 80</td>
<td>V. high strength adhesive, sealing, thread μ 0.25 0.28</td>
<td>6 Red</td>
</tr>
<tr>
<td>Precote 85</td>
<td>High strength adhesive, sealing, thread μ 0.10–0.15</td>
<td>7 Turquoise</td>
</tr>
<tr>
<td>Precote 85-8</td>
<td>Adhesive, sealing, thread μ 0.10–0.15</td>
<td>8 Turquoise</td>
</tr>
<tr>
<td>Scotch Grip 2353</td>
<td>High strength adhesive, sealing, thread μ 0.13–0.18</td>
<td>9 Blue</td>
</tr>
<tr>
<td>Scotch Grip 2510</td>
<td>High strength adhesive, sealing, thread μ 0.12–0.15</td>
<td>0 Orange</td>
</tr>
</tbody>
</table>
Securing threaded connections will become an increasingly important issue in future because designers either do not or cannot always take full account of the full range of parameters affecting threaded connections. At the same time, product liability and safety requirements are becoming ever more stringent.

Thread retention systems that do not require an additional retainer component offer higher process security overall and will dominate this market. Particularly important in this respect are chemical thread retention methods, fasteners and nuts with locking teeth, self-tapping fasteners and, to a limited extent, self-locking nuts as defined by DIN EN ISO 2320. Specialist retainers that provide additional beneficial properties for the connection beyond the retention effect (e.g. NORD-LOCK® washers, HELICOIL® screwlock) will increasingly be used.

Retainers that work by generating a positive fit (castle nut with split pin, etc.) and those for which the respective standards have been withdrawn (spring washers, toothed lock washers, etc.) should be avoided wherever possible. Modern mechanical systems are often not standardised and/or are subject to patents, utility models and other protective rights.

ECOTECH – ECOnomic TECHnical Engineering

Looking ahead

We are pleased to offer the following services according to individual requirements:

- Assembly optimisation, including on-site work at the customer
- Standardisation and optimisation
- Information and consultancy
- Customer seminars

After defining the specific requirements of a project, our Application Engineering department works together with the customer to develop recommended solutions, and provides design support where required.

Benefits of using ECOTECH

- Shorter development times
- Documented basis for decision making
- Latest fastening technology
- Reduction of storage costs
- Manufacturing process optimisation
- Optimisation of the cost of assemblies
Böllhoff International with companies in:

- Argentina
- Austria
- Brazil
- Canada
- China
- Czech Republic
- France
- Germany
- Hungary
- India
- Italy
- Japan
- Mexico
- Poland
- Romania
- Russia
- Slovakia
- Spain
- Turkey
- United Kingdom
- USA

Apart from these 21 countries, Böllhoff supports its international customers in other important industrial markets in close partnership with agents and dealers.

Important

We reserve the right to make technical modifications. Reproduction in whole or in part without express permission is prohibited.

Protection notices for restricting the use of documents and products apply in accordance with DIN ISO 16016.

The information in this brochure draws on general technical regulations and on Böllhoff's own laboratory experiments and experience.

Our aim in presenting this information is to document a certain level of knowledge in a specialist subject.

Actual physical behaviour and results may vary between applications depending on the circumstances and conditions of each individual case.

It is the responsibility of the user to ensure the suitability of each individual component for each specific application as part of their design process.

Böllhoff accepts no responsibility whatsoever for damages that may occur.

Böllhoff Groupe
Please find your local contact on www.boellhoff.com or contact us under dlv@boellhoff.com